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Data-intensive research using distributed, 
federated, person-level datasets in near 
real time has the potential to transform 
social, behavioral, economic, and health 
sciences—but issues around privacy, con-
fidentiality, access, and data integration 
have slowed progress in this area. When 
technology is properly used to manage 
both privacy concerns and uncertainty, big 
data will help move the growing field of 
population informatics forward. 

N early all of our activities from birth until death 
leave digital traces. Health records, wages 
earned, schools attended—these and countless 
other data capturing the details of our daily lives 

serve as our digital social footprint. Collectively, these 
digital traces—across a group, town, county, state, or 
nation—form a population’s social genome, the footprints 
of our society in general. If properly integrated, analyzed, 
and interpreted, social genome data could offer crucial 
insights into how best to serve our greatest societal priori-
ties: healthcare, economics, education, and employment.

Social scientists have long drawn on data collections 
from governments and elsewhere to track demographic 
trends, inflation, employment rates, and so on. Now, 

however, our daily activities leave digital crumbs all over 
cyberspace, and we have the technology to gather and 
analyze these crumbs to reveal previously hidden trends. 
This newfound ability to examine deep analysis-rich ques-
tions in near real time using distributed datasets that are 
large, complex, and diverse has the potential to transform 
social, behavioral, economic, and health sciences. Popula-
tion informatics is the burgeoning field at the intersection 
of social sciences, health sciences, computer science, and 
statistics that applies quantitative methods and computa-
tional tools to answer questions about human populations. 
Just as bioinformatics has revolutionized biological  
research, population informatics could catalyze significant 
advances in our understanding of trends in society, health, 
and human behavior.

The use of big data has spurred major advances in many 
areas, from climatology to bioinformatics to business ana-
lytics. Unfortunately, social and health sciences are much 
more complex, relying on person-level information across 
a population. So far, challenges associated with maintain-
ing privacy and confidentiality, access, data integration, 
and data management have constrained the use of micro 
data—person-level data—in these areas of research, leav-
ing rich databases largely untapped.

But improving our capacity to analyze big data col-
lections that involve person-level information is not just 
interesting science: the results could lead to more informed 
and effective policy decisions and management of social 
programs. Social genome data can tell us about how people 
live, work, respond to change, and make decisions, as well 
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as the collective impact of these individual decisions. Such 
insights help us understand the root causes of social and 
public health problems, predict the downstream effects 
of different policy options, and allocate our collective  
resources for the greatest impact.

DEFINING SOCIAL GENOME DATA 
Information about individual people is critical to under-

standing society in the same way that the physical genome 
is critical to understanding an organism. In many ways, 
the information held in social genome data represent the 
social being, whereas our physical genome data repre-
sent our physical being. A child is born not only with a 
certain genome sequence but also into a certain social 
environment—parents, siblings, town, economic status—
that influences the life path the child will take. Data on 
these social environments are just as important in under-
standing the overall well-being of a person as his or her 
physical genome. Being able to study the social genome at 
scale will enable data-driven understanding of important 
sociological questions such as the long-term effect of the 
social genome at birth. 

To decipher patterns about the ways societies behave 
and evolve, social scientists must examine how individuals 
live and interact. The social genome thus represents a core 
set of data that information scientists can use to explore 
connections, build theories, and propel breakthroughs in 
managing a society. But just as with the physical genome, 
the social genome does not provide the full story; it also 
contains some useless and erroneous information, so the 
problem of extracting insights from these data is very 
challenging.

The field of bioinformatics—now virtually inextricable 
from the practice of biology as a whole—was catalyzed 
largely by a single endeavor: the Human Genome Proj-
ect. Although bioinformatics now includes a plethora of  
methods and tools beyond genome sequencing, the Human 
Genome Project provided the focus and structure needed to 
develop key bioinformatics tools and principles. We need a 
similar Social Genome Project to catalyze population infor-
matics. The solution we envision and describe here includes 
a series of region-based social genome projects that could 
serve as a springboard for developing the tools, analytical 
methods, and oversight mechanisms needed to transform 
population informatics to the next level.

CASE STUDIES
Big data is being harnessed for powerful new person- 

level applications in many areas already. Health infor-
matics analyzes electronic records to improve healthcare 
delivery and health outcomes for a population. Educa-
tion informatics relies on school records for education 
research and delivery. Transit informatics uses real-time 
GIS data to facilitate public transportation. Business 

analytics turns operations data into meaningful infor-
mation for key business functions, such as marketing 
and client profiling. 

Although the data are distinct in each of these fields, 
the common theme is the application of informatics to 
process, manage, and analyze individual-level data for 
group-level insight. Population informatics—accessing 
existing collections of raw data for secondary purposes—
helps drive a deeper understanding of the social genome. 
However, the key factors that make population informat-
ics difficult are that the data capture many features about 
a large number of individuals (volume), the data are con-
tinuously updated to reflect changes (velocity), the data 
exist in heterogeneous systems that are redundant yet 
inconsistent (variety), and the data are incomplete and  

erroneous (veracity). These four Vs of big data are common 
to all data-intensive science. Nevertheless, the advantages 
of being able to integrate, analyze, and interpret massive 
person-level data collections are clear, as illustrated in the 
following examples.

Economics application
One example of the power of data integration is the 

Longitudinal Employment Household Dynamics program 
at the US Census Bureau. LEHD integrates data from cen-
suses, surveys, and administrative records from national 
and state-based databases across all 50 states to gener-
ate information about labor markets. The project enabled 
economists to use real-world US data to test their models 
of unemployment dynamics and model-churning behavior, 
earning some of them a Nobel Prize. 

Worker churning, a ubiquitous feature of the US labor 
market, refers to companies hiring and firing at the same 
time. Research on worker churning requires the more 
detailed person-level data available only in the admin-
istrative data, and not just the net job loss or creation 
per company that was traditionally available before this 
project launched. LEHD vertically integrates data from 
across multiple geographic areas in one domain—labor. 
A project that horizontally integrates data across multiple 
domains—labor, education, and health, for example—
would be even more powerful, even if it were confined to 
one geographic area.

Population informatics is the burgeoning 
field at the intersection of social 
sciences, health sciences, computer 
science, and statistics that applies 
quantitative methods and computational 
tools to answer questions about human 
populations. 
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Health application
Another successful integration of different facets of the 

social genome to gain population insights in near real time 
is the Google Flu project (www.google.org/flutrends). By 
combining information about physician visits with individ-
uals’ search queries, Google, in collaboration with the US 
Centers for Disease Control, was able to predict incidences 
of flu in a more timely and accurate manner than what 
the CDC could do with just the physician visit information. 

A SOCIAL GENOME PROJECT
Researchers are already using person-level data to study 

population trends. However, many countries lack a na-
tional framework for secondary use of such data, leaving 
each project to develop its own privacy protection and 
thereby leaving potential vulnerabilities that can degrade 
public trust in such work. Developing the technology and 
policies for a virtual “hot cell”—analogous to the shielded 

rooms used for working with radioactive material—
to provide a safe environment for conducting sensitive  
person-level data research is of critical importance. 

In our vision, each social genome project would estab-
lish a regional data gateway—a social genome center—for 
data relevant to population-level studies in a certain region, 
such as a state. Generally speaking, these gateways would 
provide a common portal to multiple databases such as 
birth, tax, or criminal records where data could be safe-
guarded while research is conducted. This would be a 
virtual repository in that data would still be housed physi-
cally where most appropriate. Access to data would still 
be controlled by different data custodians, but the center 
would facilitate and streamline the process of obtaining 
access. 

The center would not be responsible for integrating or 
cleaning the heterogeneous data for a particular study. 
Rather, it would provide the tools that researchers need 
to clean and integrate the data to meet their require-
ments by building a hybrid human-machine system that 
researchers can easily plug into. This would allow each 
study to optimize the utility of the data to particular re-
search questions. From the users’ perspective, these 
social genome centers would function much like a public 
library or the federal government’s database collection 
(http://data.gov). But on the back end, the centers would 

add value to the databases they can access by making 
the full process—from raw data to the summarized  
statistics—transparent and available to authorized users 
in appropriately protected environments as needed. Each 
center would also be responsible for developing systems, 
both technical and governance, to protect personal privacy 
and confidentiality, overseeing processes for providing 
access to data and developing the software required for 
such research.

Our envisioned informatics architecture would begin 
with the data ingestion layer, responsible for getting data 
into the system securely and creating the loose con-
nections to other data in the system for later use. Loose 
connections tolerate inconsistencies across datasets that 
can only be resolved based on the application. The second 
layer—data access and analysis—would be responsible 
for giving diverse system users privacy-preserving levels 
of access and views of the data appropriate for the tasks 
required to safely turn the social genome data into useful 
information. Finally, the topmost layer—information  
delivery—would provide a library of customizable visu-
alization tools that content experts could use to deliver 
relevant, evidence-based information that could then be in-
cluded as part of their results and conclusions (for example, 
real-time reports, graphs, and summary data tables). This 
layer could easily be integrated with other efforts to make 
government data more accessible, such as http://data.gov.

THE CHALLENGE 
To put big data to work for population informatics, 

we must overcome some unique challenges. Investing in  
infrastructures to propel population informatics forward 
in a coordinated, responsible way can help us unleash the 
power of big data for the nation’s collective benefit. Many 
more topics, such as secure data ingestion, auditing, and 
data version controls, are not covered here due to space 
constraints.

Building a knowledge base platform with 
uncertainty management 

Whereas a company like Amazon owns much of its 
customer data and can centrally manage and analyze that 
information, the data sources of greatest value to popula-
tion informatics research are managed by disparate bodies 
including hundreds of departments within local, state, 
and federal governments—birth and death records, Medi-
care and Medicaid rolls, school enrollment rosters, and 
criminal records, to name a few. Each agency has its own 
approach to collecting, labeling, managing, and providing 
access to data, making it challenging for researchers—
even those within government bodies—to integrate data 
for in-depth analysis. Thus the social genome platform 
must provide tools to ingest and manage diverse kinds of 
data, including structured repositories such as medical 

The social genome thus represents a core 
set of data that information scientists 
can use to explore connections, build 
theories, and propel breakthroughs in 
managing a society.
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records, summary statistics such as socioeconomic indica-
tors from the US Census, and real-time unstructured data 
such as medical notes or tweets. Because social genome 
centers would primarily deal with individual-level data, 
the completion of the following two tasks is essential:  
disambiguating individuals, such as identifying that Bob in 
education records, Robert in the Social Security dataset, 
and bob1234 on Twitter, are the same person; and enrich-
ing individual information from multiple datasets, such as 
knowing that Bob volunteers at a retirement home based 
on his tweets. This process of continuously ingesting,  
disambiguating, and enriching entities from disparate 
sources of information is referred to as knowledge base 
synthesis.1

An important difference between knowledge base 
synthesis and typical ETL (extract-transform-load) tools 
available for data warehousing is the fact that it must  
integrate information from multiple domains and main-
tain multiple versions of the data to satisfy the disparate 
information needs of multiple users. For instance, a social 
genome center might host the information from three  
different state agencies (or domains): education, child 
welfare, and health. Each agency (or user) is interested 
in maintaining and curating its own data, as well as in  
enriching datasets with information from other databases, 
requiring the disambiguation of people and entities such 
as hospitals and schools. These agencies might have dif-
ferent uses for the data—the education department might 
only release statistical summaries, while the health de-
partment might want to utilize child-level data for medical 
interventions (and thus have a lower tolerance for errors 
in disambiguation and enrichment). Finally, the social 
genome center has to support multiple versions represent-
ing different time points to understand temporal trends.

As the number of domains, users, and versions  
increases, the complexity of management, disambiguation, 
and enrichment of individual information only increases. 
Moreover, users of the social genome data must be able 
to bring together (disambiguate, consolidate, and ana-
lyze) chaotic data into a view that can address particular  
research questions on the fly. To support multiple data 
uses, the system cannot create a single, consolidated, and 
clean view of the data, but rather a framework and tools 
so that users can manipulate their own views at will and 
easily. This is fundamentally different from the goals of the 
typical ETL process, which maintains one clean collection 
of data. A better approach is to abstract out domain- 
independent algorithms into a platform layer and to 
expose a set of plug-ins that different users can customize 
for knowledge base synthesis.1 It is important that such 
plug-ins can support efficient human decision making 
by quickly pointing out inconsistencies that need to be 
resolved in the federated data, along with interactive  
visualization that supports multiple levels of details.

Secure data access
There is a direct relationship between data usabil-

ity and risk to privacy; greater access to data generally 
leads to a higher privacy risk but more usability of the 
data, and more restricted access generally provides 
better privacy protection at the cost of less usability. 
The key is to understand data use requirements to design 
a flexible paradigm that balances the two competing re-
quirements for usability and protection given particular 
needs. This is sometimes called the privacy-by-design 
approach to privacy protection. Privacy-by-design looks 
beyond the narrow view of privacy as anonymity and 
tailors privacy principles and data protection to the full 
system, thereby building a safe environment consist-
ing of secure computer systems and policy frameworks, 
in which data can be analyzed safely. The fundamen-
tal design principles for privacy and usability are the  
minimum-necessary standard—which states that maxi-

mum privacy protection is provided when the minimum 
information needed for the task is accessed at any given 
time—and the maximum-usability principle—which 
states that data are most usable when access to the 
data is least restrictive—in other words, direct remote 
access is most usable. If we apply these design princi-
ples into a secure laboratory for population informatics, 
the three components of that laboratory must be a well- 
designed secure computer system, secure software and 
data to carry out the research in a privacy-preserving 
manner, and a governance framework.2 

Broadly speaking, the purpose of population infor-
matics is to transform raw administrative data beyond 
operations into insights that can inform decision making. 
Table 1 details the computer system, software, and data for 
four data-access levels—restricted, controlled, monitored, 
and open—designed around the workflow from raw data 
to decision based on the four most common activities.2 
These access levels offer optimum privacy protection while 
still providing maximum usability for the given data and 
activity, and they help define a comprehensive system for 
privacy protection for most secondary data analysis in 
population informatics research. 

Privacy-by-design looks beyond the 
narrow view of privacy as anonymity 
and tailors privacy principles and data 
protection to the full system, thereby 
building a safe environment consisting 
of secure computer systems and policy 
frameworks, in which data can be 
analyzed safely.
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Privacy-preserving data integration
Integrating data from heterogeneous and un-

coordinated systems requires record linkage—the critical 
task of identifying record pairs that belong to the same 
real-world entity. But considerations of privacy make 
this a difficult issue for population informatics. Privacy-
preserving record linkage is fundamentally different 
from most privacy-preserving data operations in that 
the goals of record linkage are precisely to identify the 
entity represented by the data so that the linkage can 
be made accurately. For example, it is very important 
to distinguish between two twins in a dataset so that 
the two records are not treated as a duplicate record for 
one person and that the records are not cross-linked. 
Incorrect identification has the potential to harm the 
subjects and can also result in serious legal and clinical 
consequences. 

It is critical to understand the distinction between 
identity disclosure (who is this person?) and sensitive 
attribute disclosure (does this person have cancer?). 
Identity disclosure has little potential for harm on its own, 
but sensitive attribute disclosure is another matter.3,4 If 
we define the privacy goal of privacy-preserving record 
linkage as a guarantee against attribute disclosure, we can 

develop systems that allow both privacy protection and 
high-quality record linkage.4 

Private record linkage computes the set of linked records 
given a mapping function and outputs the linked records to 
the two private parties without revealing anything about 
the nonlinked records. The goal of private record linkage is 
to securely compute a known mapping function. The first 
generation of private record linkage methods was made up 
of hash-based algorithms, which provided strong privacy 
guarantees but were limited to exact matching. The second 
generation of methods was built on secure approximate 
string comparison operations, such as Bloom filters, to 
support approximate record linkage. Major challenges here 
are that, in reality, the mapping function is typically not 
known, and there is a requirement to manually refine the 
ambiguous links for high-quality data integration.5 

In practice, trusted third parties with access to all the 
data perform data linkage and integration. In the US, 
federal and state health statistics departments and selected 
research entities are the trusted parties. Several countries 
operate a data linkage center to support population 
research. In these centers, the most important protocol 
for privacy protection is the separation of identifying data 
and sensitive data to protect against attribute disclosure.6,7

Table 1. Comparison of risk and usability.* 

Restricted access Controlled access Monitored access Open access

Example systems RDC (Research Data Center) Secure medical workspace Secure Unix servers Public website

Type of data Decoupled micro data  
(high-risk data)

De-identified micro data
(medium-risk data)

Aggregate data
(low-risk data)

Sanitized data
(minimal-risk data)

Privacy- 
protection
methods used

Encryption for decoupling, 
locked down computer with 
physical restriction

Locked down virtual 
machine (VM) to restrict 
software on the computer 
and data channels

Information accountability Disclosure limitation 
methods

Oversight 
protocol

Based on the risk and benefit 
of the research, approval is 
required

Based on the risk and  
benefit of the research, 
approval is required

Must file what and how data are 
being used, including for what 
purpose, in advance, but does 
not require approval; will  
still support information  
accountability when breach  
is suspected

Honor system; no 
registration or details 
of use required, but 
user signs a general 
agreement with 
guidelines for  
appropriate use

Monitor use On and off the computer On the computer On the computer No monitoring

Usability I
U1.1: Software 
(SW)

Only preinstalled data  
integration and tabulation 
software; no query capacity

Requested and approved 
statistical software only

Any software Any software

Usability II
U1.2: Other data

No outside data allowed Only preapproved outside 
data allowed

Any data Any data

Usability III
U2: Access

No remote access Remote access Remote access Remote access

Risk I
R1:Cryptographic 
attack

Highly difficult Fairly difficult; would have 
to break into virtual 
machine

Easy to run sophisticated soft-
ware with outside data

NA

Risk II
R2: Data leakage

Very difficult; memorize data 
and take out

Physical data leakage (take 
a picture of monitor)

Electronically take data off the 
system

NA

* Shaded boxes represent no restriction in a particular dimension; they depict how access levels are fully opened up one at a time from restricted access to open access  
 (allowing for usability 1.1 and 1.2 results in risk 1, and allowing for usability 2 results in risk 2).
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H i g h - q u a l i t y  d a t a 
integration requires human 
involvement to manage the 
errors inevitably introduced 
by imperfect real data. 
Errors that are not properly 
managed propagate to 
subsequent data analyses, 
leading to incorrect analyses 
and decisions.8 

Recently, researchers 
have proposed Secure 
Decoupled Linkage (SDLink) 
for pr ivacy-preserving 
interactive record linkage. 
SDLink is a computerized 
third-party linkage system 
that offers safe and high-
quality data integration 
by using a hybrid human-
machine system4 based 
on three core pr ivacy 
principles.4 First, as shown in 
Figure 1, SDLink decouples 
the identifying data from 
the sensit ive data v ia 
encryption. Second, through 
chaffing (adding fake data) 
and universe manipulation 
(changing the dataset 
label), SDLink prevents the 
attribute inference that can 
occur in group disclosure. 
For example, if someone 
you know is on the cancer 
registry (group disclosure), she must have cancer (attribute 
disclosure), but this disclosure can be prevented if you 
know that the list has fake data—that people who do not 
have cancer are also on the list—or if you did not know this 
is a cancer registry. Any identity disclosure is additionally 
minimized by recoding the variables in the GUI (see the 
top of Figure 1). Only the information that is essential for 
record linkage is revealed during the linkage process. More 
research is needed to understand the useful and meaningful 
differences of the different variable types as well as what 
people infer from information displayed for linkage. The 
key is to understand the minimum information required for 
acceptable linkage and then to design protocols to securely 
reveal only that information. 

Privacy-preserving data analysis 
Although several privacy and security challenges arise 

from unauthorized access or malicious dissemination of 
data, the results of valid data analyses can also lead to 

the disclosure of sensitive information about individuals,  
and thus a confidentiality breach. There is a fine line  
between an adversary’s ability to infer sensitive attributes 
of an individual and a researcher’s ability to learn trends in 
the population. Hence, mathematically formulating what 
it means for some data analysis to not breach the privacy 
of individuals is a challenging task. Understanding these 
risks well is especially important for data released as open 
access or as monitored access in the four-level model dis-
cussed earlier.

Another challenge in private data analyses is that 
even if one result does not disclose sensitive informa-
tion about any individual, a collection of these tasks 
could potentially lead to a breach. For instance, con-
sider two queries: the number of unemployed males in 
Durham, North Carolina, and the number of males in 
Durham other than Bob who are unemployed. While 
Bob’s employment status is not disclosed by either query 
in isolation, it can be inferred by combining the answers 

Figure 1. Secure Decoupled Linkage (SDLink). The SDLink GUI (top) applies data-recoding 
techniques that display the difference between the attributes that are meaningful for record 
linkage instead of the actual data. For example, the gender field only indicates same(_), dif-
ferent (D), or missing (M) in one or both fields. Internally, the data are stored in a decoupled 
data system (bottom), which separates out the identifying attributes from the sensitive 
attributes and introduces fake data (chaffing). Decoupled data have the same level of privacy 
protection as deidentified data (mid right), but are much more powerful because researchers 
can link multiple decoupled datasets safely. Decoupled data, along with chaffing, allow for 
accurate record linkage with no attribute disclosure.
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to both queries. Recent work has shown that many 
supposedly safe methods of releasing data can lead to  
disclosure of individual information by combining multiple 
invocations of these algorithms.9,10

In fact, a classic result shows that you cannot answer 
more than an adversarially chosen set of n(log n)2 queries 
over a database of n bits such that each query has o(√n) 
errors without the adversary being able to reconstruct the 
original database. This result poses a fundamental limit 
on private data analyses and motivates the need to think 
about private data analysis as a budget-constrained prob-
lem. Each query leads to some privacy loss while providing 
some utility in terms of data analysis. The goal is to achieve 
the maximum utility under a fixed privacy budget.9 

Differential privacy is a methodology that lets us con-
cretely reason about privacy-budgeted data analysis. An 
algorithm satisfies differential privacy if, for any two da-
tasets D1 and D2 that differ in one row, the ratio of the 
likelihood of the algorithm resulting in the same output 
starting from D1 and D2 is bounded by at most eε. Thus, if 
each row in a database corresponds to an individual, then 
using a differentially private algorithm provably ensures 
that the output is not sensitive to an arbitrary change in 
any one individual’s input.10 Differential privacy is pow-
erful because it can be composed—two algorithms that 
satisfy differential privacy with parameters ε1 and ε2  
results in (ε1 + ε2) differential privacy, thus allowing us to 
apportion a total privacy budget of ε across many subtasks. 
Differential privacy can allow accurate analyses in certain 
cases. For instance, one of the LEHD data products boasts 
of provable differential private protection in the released 
data (http://onthemap.ces.census.gov). 

There has been much theoretical examination of differ-
ential privacy, but how to apply this framework to practical 
individual data is an area of active research, including un-
derstanding optimal methods to apportion privacy budgets 
to sets of overlapping data analyses, minimizing the noise 
introduced by differentially private methods in sparse 
data, and customizing and relaxing differential privacy 
in applications involving correlations, sparse data, and 
time-varying data. 

THE BROADER PROBLEM: PRIVACY, 
CONFIDENTIALITY, AND ETHICS 

In the computer science literature, privacy refers broadly 
to collection, maintenance, disclosure, and control of, and 

access to, information about individuals.11 It is helpful to 
note that in many other fields privacy refers more narrowly 
to safe data collection (data input), whereas confidential-
ity refers to safe information disclosure (data output).3  
Kenneth Prewitt, former director of the US Census Bureau, 
states that, privacy is akin to “don’t ask” and confidential-
ity is akin to “don’t tell.” Some security technologies are 
applicable to both, and others are specific to only one 
purpose.

Accidental or purposeful misuse of social genome data 
has the potential to cause harm to individuals. In addi-
tion, privacy and confidentiality breaches can lead to legal 
consequences, especially in government and research 
settings. Thus, privacy and confidentiality protection is 
critical to the success of population informatics research. 
Protecting privacy and confidentiality in secondary data 
analysis is complex and requires a holistic approach  
involving technology, statistics, governance, and a shift 
in culture of information accountability through trans-
parency rather than secrecy. Information accountability 
focuses on monitoring use of sensitive data to hold users 
of that data accountable for any misuse.12 For example, 
protection of financial credit history data is mainly based 
on information accountability, where all parties know who 
used what information for what purposes with strict laws 
to hold them all accountable. 

Governance models also play an important role in 
maximizing protection. Helen Nissenbaum provides 
a practical legal framework for privacy protection 
of personal information referred to as contextual  
integrity—that is, privacy protection depends on the 
context and the expected norms of protection given a 
particular situation.13 From a technical standpoint, these 
privacy standards result in policy requirements on digital 
data about who has access to which data, for what pur-
pose, and how the data should be maintained. The most 
relevant question for population informatics research 
is, “What are the expected norms of ethical conduct for 
doing research with person-level data in a given society?” 
Each country must start a discourse on the ethics of data 
analysis that draws on personal data. 

Given proper oversight mechanisms, people might 
willingly donate data if it means more appropriate  
allocation of tax dollars and a greater impact for gov-
ernment programs—just as they willingly share blood 
samples for research that has the potential to save lives. 
The challenge lies in establishing the proper oversight 
mechanisms. As a society, we will have to collectively 
contemplate the expected norms of ethical personal data 
use for the greatest benefit. Then, we can apply various 
privacy, confidentiality, and security technologies to hold 
researchers accountable and ensure that all research using 
social genome data is conducted within the legal and ethi-
cal boundaries.

As a society, we will have to collectively 
contemplate the expected norms of 
ethical personal data use for the greatest 
benefit.
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B ig data holds tremendous, yet untapped, potential 
for informing evidence-based decision making at 
many levels. To unleash this potential, significant 

investments in infrastructure are worthwhile to give 
researchers the ability to develop the necessary tools for 
integrating, managing, and using social and health data 
with proper oversight. A series of regional social genome 
projects would provide unprecedented access to inte-
grated, high-quality, robust datasets and offer the strategic 
focus and development space needed for population infor-
matics to mature in a responsible, coordinated manner. To 
provide initial investments and ensure long-term main-
tenance, we envision regional social genome initiatives 
as regional-national-academic consortia in which each 
participant contributes data, funding, and resources and 
reaps downstream benefits. Social genome initiatives pro-
vide tremendous opportunity for both research and public 
programs, and investments in them will provide benefits 
for decades to come. 
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